Kee-Jung Lee* and Dong-Hyuk Song

Department of Industrial Chemistry, Hanyang University, Seoul 133-791, Korea

Dong-Jin Kim and Sang-Woo Park

Division of Chemistry, Korea Institute of Science and Technology, Seoul 130-650, Korea Received March 21, 1996 Revised July 16, 1996

The reaction of benzil 1-ureidoethylidene hydrazones 8 with a mixture of triphenylphosphine, carbon tetrachloride, and triethylamine provides a general route to 7*H*-imidazo[1,2-*b*][1,2,4]triazoles 18 *via* the thermal reaction of the expected keto azine carbodiimide intermediates 13, and the structure of 18 was confirmed by X-ray crystallographic analysis.

J. Heterocyclic Chem., 34, 71 (1997).

The electrocyclic reaction of conjugated heterocumulenes as a synthetic route to heterocycles [1], prompts us to report on our studies and we recently described a new route to 1,2,4-triazole fused heterocycles such as 5,10-dihydro-1,2,4-triazolo[5,1-b]quinazolines [2], 4H-1,2,4-triazolo[1,5-c][1,3,5]oxadiazines [3], 5,6-dihydro-7H-imidazo[1,2-b][1,2,4]triazoles [4], and 5,6-dihydro-1,2,4-triazolo[5,1-d][1,3,5]oxadiazepines [4] involving electrocyclization of azino carbodiimides or N-aziridinylimino carbodiimides obtained from the corresponding ureas using Appel's dehydration method [5].

Scheme I

Scheme II

8

11

12

Also, Schweizer and co-workers reported on a synthesis of 2,3-dihydro-1*H*-imidazo[1,2-*b*]pyrazol-2-ones **2** and 4,9-dihydropyrazolo[5,1-*b*]quinazolines **3** based on the thermal rearrangement of keto azine ketimines **1** [6] (Scheme I). The present study was undertaken to examine a thermal reaction of keto azine carbodiimides **13** to prepare 5,6-dihydro-7*H*-imidazo[1,2-*b*][1,2,4]triazol-6-ones **19**, and the unexpected 7*H*-imidazo[1,2-*b*][1,2,4]triazoles **18** obtained during the course of this investigation is the subject of this publication (Scheme IV). The methods hitherto reported for the preparation of imidazo[1,2-*b*][1,2,4]triazoles either use imidazole derivatives as starting materials [7-10] or start from derivatives of the 1,2,4-triazole ring [11-15].

The starting compounds, benzil 1-ureidoethylidene hydrazones 8 employed in this study, were prepared from benzoin hydrazone 4 in three steps as dipicted in Scheme II. Benzoin hydrazone 4 was treated with S-methylthio-acetimidate hydroiodide 5 [16] in refluxing methanol followed by neutralization with aqueous sodium hydrogen carbonate to give benzoin 1-aminoethylidene hydrazone 6 in 95% yield. Compound 6 was reacted with an equivalent

Scheme IV

of isocyanates in dichloromethane at room temperature to give benzoin 1-ureidoethylidene hydrazones 7 in 92-97% yields (Table 1). Compound 7 was subsequently oxidized by dimethyl sulfoxide-acetic anhydride [17] at room temperature to afford desired benzil 1-ureidoethylidene hydrazone 8 in 66-77% yields (Table 2). Unfortunately, the

preparation of benzil 1-aminoethylidene hydrazone 10 as the first choice of starting material by the reaction of benzil monohydrazone 9 with S-methylthioacetimidate hydroiodide 5 was unsuccessful due to the formation of unusual benzil 1-methoxyethylidene hydrazone 11 and benzil bishydrazone 12 (Scheme III).

When benzil 1-ureidoethylidene hydrazones 8 were treated with three equivalents of triphenylphosphine, carbon tetrachloride, and triethylamine in refluxing dichloromethane, the only product obtained was the 7*H*-imidazo[1,2-*b*][1,2,4]triazoles 18 in 65-87% yields (Table 3), neither 5,6-dihydro-7*H*-imidazo[1,2-*b*][1,2,4]triazol-6-ones 19 nor 1,2,4-triazolo[5,1-*b*]quinazolines 20 as previously reported in the similar system [6]. A plausible mechanism for the transformation of 8 into 18 is shown in Scheme IV. Nucleophilic attack by the imine nitrogen on the carbodiimide carbon in intermediate 13 would give

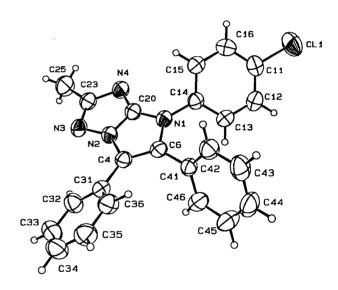


Figure. An ORTEP Diagram of 18b.

Table 1
Benzoin 1-Ureidoethylidene Hydrazones 7 Prepared

	R	Yield (%)	Mp (°C)	Molecular Formula	Analysis % Calcd/Found		
					C	Н	N
7a	C ₆ H ₅	96	193-195	$C_{23}H_{22}N_4O_2$	71.48	5.74	14.40
					71.24	5.86	14.49
7b	4-CIC ₆ H ₄	97	191-192	$C_{23}H_{21}CIN_4O_2$	65.63	5.03	13.31
					65.48	5.08	13.29
7c	2-FC ₆ H ₄	92	176-177	$C_{23}H_{21}FN_4O_2$	68.31	5.23	13.85
					68.11	5.27	13.81
7d	4-CH ₃ OC ₆ H ₄	95	185-186	$C_{24}H_{24}N_4O_3$	69.22	5.81	13.45
					69.18	5.89	13.46
7e	CH ₃ [a]	95	202-203	$C_{18}H_{20}N_4O_2$	66.65	6.21	17.27
					66.62	6.38	17.26

Table 2

Benzil 1-Ureidoethylidene Hydrazones 8 Prepared

	R	Yield	Mp	Molecular	Analysis %		
		(%) (°C	(°C)	(°C) Formula	Calcd./Found		
					C	Н	N
8a	C_6H_5	67	175-176	$C_{23}H_{20}N_4O_2$	71.86	5.24	14.57
	• •				71.59	5.40	14.28
8b	4-ClC ₆ H ₄	77	186-187	$C_{23}H_{19}CIN_4O_2$	65.95	4.57	13.38
	•				65.66	4.41	13.15
8c	2-FC ₆ H ₄	69	189-190	$C_{23}H_{19}FN_4O_2$	68.64	4.76	13.92
	•				68.78	4.76	13.70
8d	4-CH ₃ OC ₆ H ₄	67	181-182	$C_{24}H_{22}N_4O_3$	69.55	5.35	13.52
	<i>y</i> 0 4				69.37	5.31	13.48
8e	CH ₃	66	176-177	$C_{18}H_{18}N_4O_2$	67.07	5.63	17.38
	,				66.89	5.45	17.08

Table 3
5,6-Diphenyl-2-methyl-7*H*-imidazo[1,2-*b*][1,2,4]triazoles **18** Prepared

	R	Yield (%)	Mp (°C)	Molecular Formula	Mass Spectrum m/z (%)		Analysis % Calcd./Found	
		` ,	` ,			C	Н	N
18a	C ₆ H ₅	86	257-258	$C_{23}H_{18}N_4$	350 (M ⁺ , 37), 180	78.83	5.18	15.99
					(100), 103 (9), 77 (43)	78.64	5.09	15.72
18b	4-ClC ₆ H ₄	86	216-217	$C_{23}H_{17}CIN_4$	386 (18), 384 (M ⁺ , 52)	71.78	4.45	14.56
	0 1				214 (100), 216 (34),	71.91	4.24	14.31
					111 (17)			
18c	2-FC ₆ H ₄	87	192-193	$C_{23}H_{17}FN_{4}$	368 (M+, 42), 198	74.99	4.65	15.21
	., .			2.5	(100), 95 (7), 77 (13)	74.67	4.67	15.21
18d	4-CH ₃ OC ₆ H ₄	84	195-196	$C_{24}H_{20}N_4O$	380 (M ⁺ , 59), 210	75.77	5.30	14.73
	<i>y</i> 3 4				(100), 92 (7), 77 (14)	75.51	5.11	14.68
18e	CH ₃	65	144-145	$C_{18}H_{16}N_{4}$	288 (M ⁺ , 54), 118	74.98	5.59	19.43
	,			.0 10 4	(100), 77 (18)	74.78	5.42	19.31

Table 4

H-NMR Data of Compounds 7 [a], 8 [a] and 18 [b]

- **7a** 2.34 (s, 3H), 5.66 (d, 1H, J = 3.6 Hz), 6.00 (d, 1H, J = 3.7 Hz), 6.53-6.55 (m, 2H), 6.91-7.30 (m, 13H), 9.58 (s, 1H), 11.07 (s, 1H)
- 7b 2.31 (s, 3H), 5.63 (d, 1H, J = 3.9 Hz), 5.99 (d, 1H, J = 4.1 Hz), 6.48-6.51 (m, 2H), 7.04-7.30 (m, 12H), 9.63 (s, 1H), 11.18 (s, 1H)
- 7c 2.26 (s, 3H), 5.66 (d, 1H, J = 4.3 Hz), 5.98 (d, 1H, J = 4.4 Hz), 6.97-7.29 (m, 14H), 9.60 (s, 1H), 10.71 (s, 1H)
- 7d 2.30 (s, 3H), 3.66 (s, 3H), 5.63 (d, 1H, J = 4.2 Hz), 5.96 (d, 1H, J = 4.2 Hz), 6.47 (d, 2H, J = 8.9 Hz), 6.65 (d, 2H, J = 8.9 Hz), 7.03-7.28 (m, 10H), 9.47 (s, 1H), 10.85 (s, 1H)
- 7e 2.20 (s, 6H), 5.62 (d, 1H, J = 4.3 Hz), 5.95 (d, 1H, J = 4.4 Hz), 6.93-7.29 (m, 10H), 8.43 (br s, 1H), 9.13 (s, 1H)
- 8a 2.23 (s, 3H), 6.62-6.64 (m, 2H), 6.97-7.68 (m, 11H), 8.03-8.05 (m, 2H), 10.02 (s, 1H), 11.12 (s, 1H)
- 8b 2.23 (s, 3H), 6.61-6.63 (m, 2H), 7.17-7.68 (m, 10H), 8.03-8.05 (m, 2H), 10.10 (s, 1H), 11.24 (s, 1H)
- 8c 2.23 (s, 3H), 7.09-7.79 (m, 12H), 8.01-8.04 (m, 2H), 10.07 (s, 1H), 10.81 (s, 1H)
- 8d 2.23 (s, 3H), 3.70 (s, 3H), 6.60 (d, 2H, J = 7.8 Hz), 6.72 (d, 2H, J = 7.6 Hz), 7.36-7.68 (m, 8H), 8.04-8.06 (m, 2H), 9.97 (s, 1H), 10.94 (s, 1H)
- 8e 2.15 (s, 3H), 2.39 (d, 3H, J = 3.9 Hz), 7.42-7.69 (m, 8H), 8.01-8.03 (m, 2H), 8.64 (s, 1H), 9.69 (br s, 1H)
- 18a 2.55 (s, 3H), 7.27-7.32 (m, 13H), 7.65-7.68 (m, 2H)
- **18b** 2.55 (s, 3H), 7.18-7.37 (m, 12H), 7.63-7.66 (m, 2H)
- 18c 2.55 (s, 3H), 7.11-7.36 (m, 12H), 7.69-7.71 (m, 2H)
- **18d** 2.53 (s, 3H), 3.74 (s, 3H), 6.81 (d, 2H, J = 8.6 Hz), 7.16 (d, 2H, J = 8.6 Hz), 7.24-7.30 (m, 8H), 7.65-7.67 (m, 2H)
- 18e 2.54 (s, 3H), 3.51 (s, 3H), 7.18-7.61 (m, 10H)

[a] Dimethyl-d₆ sulfoxide. [b] Deuteriochloroform.

the resonance-stabilized azomethine imine 14a-14c. In 14a, the exocyclic anionic nitrogen would attack the carbonyl group and resulting oxy anion 15 react with chlo-

rotriphenylphosphonium ion, or would attack directly the chlorotriphenylphosphonium ion chelated carbonyl group, to give alkoxyphosphonium ion 16, which is converted to

Table 5

Crystal and Refinement Data for 18b

C,3H17CIN4 formula 384.86 formula weight monoclinic crystal system space group P2,/c a, Å 10.611 (4) b, Å 8.392 (3) c, Å 22.067 (5) 92.05 (3) B. deg V, Å3 1964 (1) Z 4 800 F (000) 1.302 density (calc.), g/cm³ crystal size, mm 0.24 x 0.21 x 0.30 0.210 u, absorption coef., mm⁻¹ 2Theta (max), deg. 50.20 $-12 \le h \le 12, 0 \le k \le 9, 0 \le 1 \le 26$ index ranges 2823 reflections collected 2704 independent reflections parameters refined 253 GOF [a] 1.050 R1 = 0.0460, wR2 = 0.1209 [b] final R indices $[I > 2 \sigma(I)]$ R1 = 0.0473, wR2 = 0.1225R indices (all data) largest diff. peak and hole, e · Å-3 0.285 and -0.232

[a] GOF = [Σ (w(F_o-F_c)²) / (No. of reflections -No. of parameters)]^{1/2}; [b] R1 = Σ || F_o | - | F_c || / Σ || F_o |, wR2 = { Σ w (F_o²-F_c²)² / Σ wF_o⁴}^{1/2}, where w = 1 / [σ ²F_o² + (0.0754P)² + 0.55P}, P = {Max (F_o²,0) + 2F_o²}/3.

the chloride 17 by loss of triphenylphosphine oxide and subsequent elimination of chlorine by triphenylphosphine would give compound 18.

In an attempt to block the reaction between resulting oxy anion or the carbonyl group and chlorotriphenylphosphonium ion, on the assumption that competition reaction between pathway A, A', B and C might be occurred and that possibly compounds 19 or 20 would be formed, one equivalent of triphenylphosphine was used in the reaction of 8a. However, neither compound 19 nor 20 were obtained, and 27% yield of 18a, and 42% yield of recovered unchanged urea 8a were obtained.

The structure elucidation of 18 was based on X-ray crystallographic analysis. An ORTEP diagram of 18b is shown in the Figure. Crystal and refinement data, atomic coordinates, bond lengths, and bond angles are provided in Tables 5, 6 and 7, respectively. The structure presents no marked deviations from typical bond lengths and bond angles.

We have thus worked out a useful method for the synthesis of 7H-imidazo[1,2-b][1,2,4]triazoles 18 from keto azine ureas 8 using Appel's dehydration condition.

Table 6

Atomic Coordinates (x 10⁴) and Equivalent Isotropic

Displacement Parameters (Å² x 10³) for **18b**

	-			
	X	Y	Z	U(eq)
Cl(1)	898(1)	2128(1)	3114(1)	92(1)
N(1)	4618(2)	2490(2)	5187(1)	45(1)
N(2)	6440(2)	2680(2)	5684(1)	44(1)
N(3)	7730(2)	2643(2)	5651(1)	49(1)
N(4)	6726(2)	2299(2)	4712(1)	52(1)
C(4)	5538(2)	2821(2)	6123(1)	43(1)
C(6)	4406(2)	2718(2)	5805(1)	43(1)
C(11)	1992(2)	2229(3)	3725(1)	54(1)
C(12)	1861(2)	3391(3)	4157(1)	53(1)
C(13)	2722(2)	3482(2)	4640(1)	47(1)
C(14)	3716(2)	2408(2)	4688(1)	42(1)
C(15)	3858(2)	1268(3)	4241(1)	51(1)
C(16)	2994(2)	1169(3)	3758(1)	58(1)
C(20)	5896(2)	2467(2)	5135(1)	45(1)
C(23)	7827(2)	2420(3)	5063(1)	51(1)
C(25)	9086(2)	2355(4)	4787(1)	75(1)
C(31)	5878(2)	2958(2)	6774(1)	45(1)
C(32)	6967(2)	3738(3)	6980(1)	56(1)
C(33)	7279(2)	3845(3)	7593(1)	67(1)
C(34)	6509(3)	3185(3)	8010(1)	67(1)
C(35)	5435(3)	2400(3)	7810(1)	63(1)
C(36)	5114(2)	2276(3)	7201(1)	54(1)
C(41)	3121(2)	2816(2)	6032(1)	44(1)
C(42)	2288(2)	1546(3)	5963(1)	54(1)
C(43)	1095(2)	1668(4)	6188(1)	68(1)
C(44)	740(2)	3027(4)	6477(1)	75(1)
C(45)	1557(2)	4288(4)	6546(1)	77(1)
C(46)	2748(2)	4186(3)	6323(1)	61(1)

^{*} Equivalent isotropic U defined as one third of the trace of the orthogonalized Uij tensor.

EXPERIMENTAL

All reagents and solvents were reagent grade or were purified by standard methods before use and the reactions were routinely carried out under an inert atmosphere. Silica gel 60 (70-230 mesh ASTM) used for column chromatography was supplied by E. Merck. Analytical thin layer chromatography (tlc) was performed on silica gel with fluorescent indicator coated on aluminium sheets. Melting points were taken using an Electrothermal melting point apparatus and are uncorrected. Microanalyses were obtained using a Carlo Erba EA 1180 element analyzer. The mass spectra were recorded on a Hewlett Packard model 5972 spectrometer with an electron beem energy of 70 eV. Infrared spectra were recorded on a Nicolet Magna 550 FTIR spectrometer. The ¹H and ¹³C nmr spectra were measured on a Gemini 300 spectrometer. All chemical shifts are reported in parts per million (δ) relative to tetramethylsilane. X-ray structure determination was confirmed using an Enraf-Nonius CAD-4 automatic diffractometer.

The S-methylthioacetimidate hydroiodide [16] and benzoin hydrazone [18] were prepared following the literature procedures. Benzoin, benzil monohydrazone, and isocyanates were purchased from Aldrich Chemical Company.

Table 7
Bond Lenghts (Å) and Bond Angles (deg) for 18b

Cl (1)-C (11)	1.750 (2)	C (13)-C (14)	1.389 (3)
N (1)-C (20)	1.365 (3)	C (14)-C (15)	1.385 (3)
N (1)-C (6)	1.403 (3)	C (15)-C (16)	1.383 (3)
N (1)-C (14)	1.434 (3)	C (23)-C (25)	1.489 (3)
N (2)-C (20)	1.335 (2)	C (31)-C (36)	1.387 (3)
N (2)-N (3)	1.374 (2)	C (31)-C (32)	1.390 (3)
N (2)-C (4)	1.391 (3)	C (32)-C (33)	1.383 (3)
N (3)- C (23)	1.318 (3)	C (33)-C (34)	1.370 (4)
N (4)-C (20)	1.314 (3)	C (34)-C (35)	1.375 (4)
N (4)-C (23)	1.382 (3)	C (35)-C (36)	1.379 (3)
N (4)-C (6)	1.373 (3)	C (41)-C (46)	1.381 (3)
C (4)-C (31)	1.473 (3)	C (41)-C (42)	1.390 (3)
C (6)-C (41)	1.472 (3)	C (42)-C (43)	1.379 (3)
C (11)-C (12)	1.375 (3)	C (43)-C (44)	1.367 (4)
C (11)-C (16)	1.386 (3)	C (44)-C (45)	1.373 (4)
C (12)-C (13)	1.379 (3)	C (45)-C (46)	1.375 (3)
C (20)-N (1)-C (6)	106.1 (2)	C (11)-C (16)-C (15)	119.3 (2)
C (20)-N (1)-C (14)	124.9 (2)	N (4)-C (20)-N (2)	112.3 (2)
C (6)-N (1)-C (14)	128.9 (2)	N (4)-C (20)-N (1)	138.9 (2)
C (20)-N (2)-N (3)	110.4 (2)	N (2)-C (20)-N (1)	108.8 (2)
C (20)-N (2)-C (4)	110.9 (2)	N93)-C (23)-N (4)	117.9 (2)
N (3)-N (2)-C (4)	138.7 (2)	N (3)-C (23)-C (25)	120.7 (2)
C (23)-N (3)-N (2)	99.7 (2)	N (4)-C (23)-C (25)	121.4 (2)
C (20)-N (4)-C (23)	99.7 (2)	C (36)-C (31)-C (32)	118.2 (2)
C (6)-C (4)-N (2)	104.4 (2)	C (36)-C (31)-C (4)	120.1 (2)
C (6)-C (4)-C (31)	133.1 (2)	C (32)-C (31)-C (4)	121.7 (2)
N (2)-C (4)-C (31)	122.4 (2)	C (33)-C (32)-C (31)	121.1 (2)
C (4)-C (6)-N (1)	109.8 (2)	C (34)-C (33)-C (32)	120.2 (2)
C (4)-C (6)-C (41)	128.8 (2)	C (33)-C (34)-C (35)	119.1 (2)
N (1)-C (6)-C (41)	121.5 (20	C (34)-C (35)-C (36)	121.4 (2)
C (12)-C (11)-C (16)	120.9 (2)	C (35)-C (36)-C (31)	120.0 (2)
C (12)-C (11)-Cl (1)	119.2 (2)	C (46)-C (41)-C (42)	119.8 (2)
C (16)-C (11)-Cl (1)	119.8 (2)	C (46)-C (41)-C (6)	119.3 (2)
C (11)-C (12)-C (13)	119.6 (2)	C (42)-C (41)-C (6)	120.8 (2)
C (12)-C (13)-C (14)	120.2 (2)	C (43)-C (42)-C (41)	119.5 (2)
C (15)-C (14)-C (13)	119.7 (2)	C (44)-C (43)-C (42)	120.1 (2)
C (15)-C (14)-N (1)	119.5 (2)	C (43)-C (44)-C (45)	120.7 (2)
C (13)-C (14)-N (1)	120.8 (2)	C (44)-C (45)-C (46)	119.8 (3)
C (14)-C (15)-C (16)	120.2 (2)	C (45)-C (46)-C (41)	120.0 (2)

^{*} Symmetry transformations used to generate equivalent atoms.

Benzoin 1-Aminoethylidene Hydrazone 6.

To a solution of benzoin hydrazone (4, 4.53 g, 20 mmoles) in 100 ml of methanol was added S-methylthioacetimidate hydroiodide (5, 5.64 g, 26 mmoles) and this solution was stirred at reflux temperature for 0.5 hour. After cooling to room temperature the solvent was removed on a rotavapor and the residue was partitioned between aqueous sodium hydrogen carbonate solution and dichloromethane. The dichloromethane layer was washed with water and the solvent was removed after drying over magnesium sulfate, and the residue was crystallized with petroleum ether to give 5.08 g (95%) of 6, mp 106-107°; 1 H nmr (deuteriochloroform): δ 1.96 (s, 3H), 5.12 (br s, 3H), 5.63 (s, 1H), 7.16-7.27 (m, 10H); 13 C nmr (deuteriochloroform): δ 161.2, 158.3, 140.9, 134.2, 128.9, 128.8, 128.4, 128.1, 127.8, 127.5, 75.9, 19.8; ir (potassium bromide): 3409, 3333, 3241,

1632, 1576, 1495, 1403, 1291, 1260, 1194, 1097, 1021, 705, 624 cm⁻¹

Anal. Calcd. for $C_{16}H_{17}N_3O$: C, 71.89; H, 6.41; N, 15.79. Found: C, 71.78; H, 6.46; N, 15.50.

Benzoin 1-Ureidoethylidene Hydrazones 7. General Procedure.

To a stirred solution of benzoin 1-aminoethylidene hydrazone (6, 1.34 g, 5 mmoles) in 25 ml of dichloromethane was added isocyanate (5 mmoles) at room temperature. The white solid was precipitated as soon as addition was completed. After stirring for 0.5 hour at ambient temperature, the precipitated solid was separated by filtration, washed with ether to give 7 (Table 1).

Benzil 1-Ureidoethylidene Hydrazones 8. General Procedure.

To a stirred solution of 7 (4 mmoles) in 20 ml of dry dimethyl sulfoxide was added 6 ml of acetic anhydride. The solution was stirred for 6 hours at room temperature and poured onto 100 g of ice. The mixture was made basic with saturated sodium hydrogen carbonate, and the resulting precipitate was filtered and washed with water, followed by recrystallization from ethanol to give 8 as a pale yellow solid (Table 2).

Benzil 1-Methoxyethylidene Hydrazone 11 and Benzil Bishydrazone 12.

To a suspension of benzil monohydrazone (9, 0.90 g, 4 mmoles) in 20 ml of methanol was added S-methylthioacetimidate hydroiodide (5, 0.87 g, 4 mmoles) and this mixture was stirred at reflux temperature for 1 hour. After cooling to room temperature the solvent was removed on a rotavapor and the residue was partitioned between aqueous sodium hydrogen carbonate solution and dichloromethane. The dichloromethane layer was washed with water and the solvent was removed after drying over magnesium sulfate, and the residue was chromatographed on silica gel column and eluted with hexane-ethyl acetate 3:1 to give 0.31 g (28%) [19] of 11 and 0.44 g (23%) [19] of 12 in the order of elution.

Compound 11 had mp 92-94° (dichloromethane-hexane); ¹H nmr (deuteriochloroform): δ 2.22 (s, 3H), 3.34 (s, 3H), 7.36-7.91 (m, 10H); ¹³C nmr (deuteriochloroform): δ 198.5, 169.7, 162.3, 135.6, 133.4, 130.8, 130.4, 128.9, 128.7, 128.6, 127.1, 53.8, 14.5; ir (potassium bromide): 1678, 1625, 1569, 1496, 1453, 1374, 1293, 1229, 1052, 913, 689, 587 cm⁻¹.

Anal. Calcd. for $C_{17}H_{16}N_2O_2$: C, 72.84; H, 5.75; N, 9.99. Found: C, 73.13; H, 5.60; N, 10.12.

Compound 12 had mp 184-185° (ethyl acetate); ¹H nmr (deuteriochloroform): δ 2.11 (s, 3H), 7.26-8.06 (m, 20H), 10.47 (s, 1H); ¹³C nmr (deuteriochloroform): δ 198.2, 191.5, 161.2, 157.8, 146.8, 137.3, 135.3, 134.0, 132.9, 132.3, 130.9, 130.5, 130.0, 129.3, 129.1, 128.9, 128.8, 128.6, 128.3, 127.9, 127.1, 17.2; ir (potassium bromide): 3414, 3297, 1683, 1652, 1617, 1561, 1494, 1429, 1301, 1225, 1164, 1087, 1026, 945, 899, 695 cm⁻¹.

Anal. Calcd. for C₃₀H₂₄N₄O₂: C, 76.25; H, 5.12; N, 11.86. Found: C, 76.18; H, 5.11; N, 11.80.

5,6-Diphenyl-2-methyl-7*H*-imidazo[1,2-*b*][1,2,4]triazoles **18**. General Procedure.

To a stirred solution of the appropriate urea 8 (3 mmoles) in 25 ml of dichloromethane was added triphenylphosphine (1.18 g, 4.5 mmoles), carbon tetrachloride (1.16 ml, 12 mmoles), and triethylamine (0.63 ml, 4.5 mmoles) and the mixture was heated

to reflux temperature. After 1 hour, the same amount of triphenylphosphine, carbon tetrachloride, and triethylamine was added once more, and the mixture was refluxed for 1 hour further. After cooling to room temperature the reaction mixture was partitioned between water and dichloromethane (15 ml x 2), and combine each other, and the solvent was removed after drying over magnesium sulfate. The residue was chromatographed on silica gel column and eluted with hexane-ethyl acetate 3:1 to yield the product 18 as a white solid (Table 3).

Crystallographic Structure Determination of 18b.

A colorless crystal of $C_{23}H_{17}ClN_4$, **18b**, grown by slow evaporation of an ethanolic solution, belonged to the monoclinic space group $P2_I/c$: a=10.611 (4), b=8.392 (3), c=22.067 (5) Å, $\beta=92.05$ (3)°, V=1964 (1) ų, Z=4, D (calcd.) = 1.302 gcm⁻³, and, $\mu=0.210$ mm⁻¹. Of 2823 reflections collected at 23° (M_oK_α 3.7° ≤ 2 $\theta \leq 50.20$ °), 2704 were unique with I>2 $\sigma(I)$ were used in the solution and refinement of the structure. All non-hydrogen atoms were located by direct methods and subsequent difference Fourier syntheses. All hydrogen atoms were added at calculated positions. Refinement of all non-hydrogen atoms with anisotropic temperature factors (hydrogen atoms isotropic) led to convergence at R1=0.0460, wR2 = 0.1209, GOF = 1.050, with the highest peak on the final difference map of 0.285 e Å⁻³.

Acknowledgement.

We gratefully acknowledge the Korea Science and Engineering Foundation (Grant No. 941-0300-008-2) for support of this research.

REFERENCES AND NOTES

- * Author to whom correspondence should be addressed.
- [1a] J. Barluenga and F. Palacios, Org. Prep. Proced. Int., 23, 1

- (1991); [b] N. I. Gusar, Russian Chem. Rev., 60, 146 (1991); [c] Y. G. Gololobov and L. Kasukin, Tetrahedron, 48, 1353 (1992); [d] S. Eguchi, Y. Matsushita and K. Yamashita, Org. Prep. Proced. Int., 24, 209 (1992).
- [2] K.-J. Lee, S. H. Kim, S. Kim, H. Park, Y. R. Cho, B. Y. Chung and E. E. Schweizer, *Synthesis*, 1057 (1994).
- [3a] K.-J. Lee, S. Kim, S. H. Kim, H. Park, Y. R. Cho, B. Y. Chung, *Bull. Korean Chem. Soc.*, 16, 73 (1995); [b] K.-J. Lee, Y.-S. Lee, D.-H. Song, *Bull. Korean Chem. Soc.*, 16, 1037 (1995).
- [4] K.-J. Lee and S.-U. Kang, Tetrahedron Letters, 36, 2815 (1995).
- [5] R. Appel, R. Kleinstück and K. D. Ziehn, *Chem. Ber.*, 104, 1335 (1971).
- [6a] E. E. Schweizer and K.-J. Lee, J. Org Chem., 49, 1964 (1984); [b] E. E. Schweizer, J. E. Hayes, A. Rheingold and X. Wei, J. Org Chem., 52, 1810 (1987).
- [7] P. Molina, E. Aller and A. Lorenzo, Heterocycles, 37, 997 (1994).
 - [8] P. Molina, A. Lorenzo and E. Aller, Synthesis, 843 (1989).
- [9] P. Molina, M. Alajarin, A. Ferao, A. Lorenzo, M. J. Vilaplana, E. Aller and J. Planes, *Heterocycles*, 27, 161 (1988).
- [10] A. Hetzheim, H. Pusch and H. Beyer, Chem. Ber., 103, 3533 (1970).
- [11] S. Farooq, W. E. Swain, Jr., R. Daeppen and G. Rihs, *Tetrahedron Asymmetry*, 3, 51 (1992).
- [12] C. Parkanyi, A. O. Abdelhamid, J. C. S. Cheng and A. S. Shawali, J. Heterocyclic Chem., 21, 1029 (1984).
- [13] F. S. Babichev, L. Al Yusofi, V. N. Bubnovskaya and E. V. Boiko, *Ukr. Khim. Zh.*, **50**, 1279 (1984); *Chem. Abstr.*, **103**, 6279q (1985).
- [14] F. Faure, E. V. Vincent, R. M. Claramunt, J. M. Fábrega and J. Elguero, *Tetrahedron*, 32, 341 (1976).
- [15] A. Sitte, R. Wessel and H. Paul, *Monatsh. Chem.*, **106**, 1291 (1975).
- [16] H. Bredereck, R. Gompper and H. Seiz, *Chem. Ber.*, **90**, 1837 (1957).
- [17] J. D. Albright and L. Goldman, J. Am. Chem. Soc., 89, 2416 (1967).
 - [18] Curtius and Blumer, Beilstein 8, 176.
 - [19] Yield was based on S-methylthioacetimidate hydroiodide.